Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations
نویسندگان
چکیده
منابع مشابه
Adaptive Discontinuous Galerkin Methods for Nonlinear Diffusion-Convection-Reaction Equations
In this work, we apply the adaptive discontinuous Galerkin (DGAFEM) method to the convection dominated non-linear, quasi-stationary diffusion convection reaction equations. We propose an efficient preconditioner using a matrix reordering scheme to solve the sparse linear systems iteratively arising from the discretized non-linear equations. Numerical examples demonstrate effectiveness of the DG...
متن کاملOn Splitting-Based Numerical Methods for Convection-Diffusion Equations
Convection-diffusion equations model a variety of physical phenomena. Computing solutions of these equations is an important and challenging problem, especially in the convection dominated case, in which viscous layers are so thin that one is forced to use underresolved methods that may be unstable. If an insufficient amount of physical diffusion is compensated by an excessive numerical viscosi...
متن کاملConvergence Criteria for Iterative Methods in Solving Convection-diffusion Equations on Adaptive Meshes
In this work, sparse linear systems obtained from the streamline diffusion finite element discretization of the convection-diffusion equations are solved by a multigrid method and the generalized minimal residule method. Adaptive mesh refinement process is considered as an integral part of the solution process. We propose some stopping criteria for iterative solvers to ensure the iterative erro...
متن کاملMultilevel Adaptive Particle Methods for Convection-Diffusion Equations
We present novel multilevel particle methods with extended adaptivity in areas where increased resolution is required. We present two complementary approaches as inspired by r-adaptivity and adaptive mesh refinement (AMR) concepts introduced in finite difference and finite element schemes. For the r-adaptivity a new class of particle based mapping functions is introduced while the particle-AMR ...
متن کاملAdaptive Reduced Basis Methods for Nonlinear Convection–Diffusion Equations
Many applications from science and engineering are based on parametrized evolution equations and depend on time-consuming parameter studies or need to ensure critical constraints on the simulation time. For both settings, model order reduction by the reduced basis methods is a suitable means to reduce computational time. In this proceedings, we show the applicability of the reduced basis framew...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8030302